IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998 2213

A Robust Ultra-Broad-Band Wireless
Communication System Using
SAW Chirped Delay Lines

Andreas SpringerAssociate Member, IEEBViario Huemer,Student Member, IEEH,eonhard ReindIMember, IEEE,
Clemens C. W. RuppeBenior Member, IEEE Alfred Pohl, Member, IEEE Franz SeifertSenior Member, IEEE,
Wolfgang Gugler,Student Member, IEEERNd Robert WeigelSenior Member, IEEE

Abstract—Design and performance of a low-cost wireless com- The spread-spectrum technology is especially well suited
munication system for indoor and industrial environments are to provide such a robust data transmission even in very
presented. The system is based on chirp-signal transmission noisy radio environments [2]. Originally developed for mil-

to achieve a robust communication link. For the chirp expan- itar ] read trum communication i rrentl
sion and compression, surface acoustic wave chirped delay lines ary purposes, spread-spectrum co unication Is currently a

fabricated from LiTaO 5-X112rotY are used. Center frequency, Popular technology in many areas of mobile communications.
bandwidth, and chirp rate are 348.8 MHz, 80 MHz, and +40 It is established in the 1S-95 standard for cellular phones,
MHz/ s, respectively. An optimized square-root weighting was as well as in the IEEE 802.11 standard for WLAN's [1]

chosen to reduce the sidelobes of the compressed pulse-td2 and, very recently, it has been chosen to be part of the

dB compared to the correlation peak. The chirp filters have been | . -
deployed in a hardware demonstrator for data rates of up to 5 third-generation cellular phone system standard UMTS. Key

Mb/s. Limiting factors for the data rate according to simulations ~ features of the spread-spectrum technology are high immu-
and measurements are mainly intersymbol interferences due to nity against multipath phenomena, high spectral efficiency,

the time overlapping of consecutive symbols and, to a lower |ow power, and low cost. The critical operations in spread-

extent, the multipath propagation. spectrum systems are the spreading and despreading functions
Index Terms—Chirp signals, spread spectrum communication, in the transmitter and receiver, respectively. The common
surface acoustic waves, wireless communications. system concepts [direct_sequence (DS) and frequency hoppmg

(FH)] require rather sophisticated circuit designs and system
realizations to accomplish the despreading in the receiver.
. L In particular, the synchronization of the despreading code
I HE wireless communications market has undergoneqgqence is a difficult task. With the well-known FM chirp
tremendous growth. This is mainly due to the rap|dl)$i nals and the associated technique of pulse compression
expanding area of personal communication services (PC3g its high processing gain, which is widely used in radar
like cellular or cordless phone systems, paging and wirele§gsiems [3], another kind of spread-spectrum communication
local area networks (WLAN’S)._Some applications like cellulagystem can be realized [4]. In such a system, the spectrum
phone systems are already widely accepted, although markgto o jing is used for combating the multipath distortions,
penetration is still far' from saturation, while others, €.9,1areas code-division multiple access (CDMA) can only be
WLAN'.S, are just startlng to become a common technolgg()éanzed if additional coding is introduced [5].
[1]- Driven by the rapid development of RF technologies 1he generation of the transmitted chirp signals and the
for PCS’s, wireless communication systems for industrighrejation process in the receiver are vital to the chirp
environments are now facing strong interest. Here, majQqiom Both functions are easily accomplished by using
applications are flexible and mobile data—transm|ss,|on "”%ﬁrface acoustic wave (SAW) chirped delay lines [3], which
between sensors, actuators, autonomous vehicles, robots, gad el suited for use as expansion and compression filter in
controller'unl.ts. Due to the hostile eIectromagneyc enviroggq proposed communication system due to their high degree
ment, Wh'_Ch includes severe elect_roma_gnenc em'SS'O”S_foﬂ“ flexibility in designing desired transfer functions. SAW
other devices as well as heavy distortions due to multipalijirpeq delay lines can be realized at small size and low
propagation, the robustness of the communication link (3¢t a5 js the case with the well-established SAW filters and
extremely important. resonators in wireless communication products [6], [7]. Our
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chirped delay lines are described, radio channel simulation and 1 \ x \ .
measurement, an issue of great relevance to every wireless |
communication system, is covered, and results of the system

simulation, as well as measurement results achieved with a%¢

hardware demonstrator, are given. oa

0.2

Il. SYSTEM OVERVIEW

Relative Voltage

A. Basic Chirp Theory

A chirp waveform can be written as
s(t) = a(t) cos[©(t)] (1)

where 6(¢) is the time-domain phase, andt) is the time-
domain envelope, which is zero outside a time interval of %} i
length7". The instantaneous frequency is defined as P ; ‘ l j J ‘ .
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M T or dt Fig. 1. Autocorrelation function for a linear chirp signal with the parameters
. T = 2us, B = 80 MHz, and f. = 348.8 MHz.
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is denoted the chirp rate. Waveforms wijili) > 0 are called
up-chirps while those with:(¢) <0 are called down-chirps.
For a linear chirp,u(t) is constant and, hencey,(¢) is a

linear function oft, and ©(¢) is a quadratic function. If we
take the waveforms(¢) to be centered at = 0, it can be

written as

time (dataperiods)

Fig. 2. Schematic of a SAW BOK wireless local area network (LAN).
s(t) = a(t) cos[2m fot + mut® + @o) 4

where f, is the center frequencyp, is the phase constant,for —7" < ¢ < 7' This is illustrated in Fig. 1 for the parameters
anda(t) = 0 for |¢| > T/2. Itis convenient to define the chirp7 — 2us, B = 80 MHz, and f. = 348.8 MHz, which are
bandwidthB as the range of instantaneous frequenCieS SO trﬂ%@d in our proposed System_ The enve]ope has its maximum
B=|u|T. (5) att =0, and its first zeros at ~ +1/B. It is convenient
to specify the pulsewidth as/B. This gives a value of
The 3-dB bandwidth of the SpeCtrUm is dependent on the Shq@S ns for the given examp]e_ The ratio of the input and
of a(t) and can be different fronb. output pulsewidths is given by the time-bandwidth product
If a chirp waveform is fed into its matched filter whoser B, which is known as compression ratio or processing gain.
impulse response is also a chirp waveform, but with it&nother important parameter is the sidelobe rejection, which
frequency varying in the opposite direction, then the outpHere is about 13 dB. A common method of reducing the
signal typically has a narrow RF peak at the chirp centgdelobes is to apply amplitude weighting of the chirp signal,

frequency. Generally, the width of the output peak is muGRhich is described in more detail in Section III.
less than the lengtii” of the input waveform and, hence, the

process is called pulse compression, and the matched filtegisgok

commonly named compressor. If we regard chirp waveforms _. - .
with flat envelopes and if we take the matched filter also to Fig. 2 shows the principle of the BOK n,l,o.du'%tlon scheme
be centered at = 0, e.g., in the time-frequency plane. If we send a “high,” an IF pulse

at the chirp center frequency of 348.8 MHz stimulates the
h(t) ~ s(=t) (6) up-chirp filter, if we send a “low,” the down-chirp filter is
a{imulated. With a chirp-signal duration of.2 the highest
achievable data rate would be only 500 kb/s, which is too
low for today’s systems. To increase the data rate, the chirp
g(t) = h(t) * s(t) = @ss(t) (7) signals have to overlap in time, as is shown in Fig. 2. By
that measure, the data rate of our system is 2 Mb/s. The sum
of both filter outputs is launched at a transmitter frequency
of 2.45 GHz. In the receiver, the signal, which is disturbed
cin {wBt <1 _ %)} by the frequency-selective radio channel and additive noise,
is mixed down and fed into the SAW compressor filters. The
VBT Bt cos(2mfot)  (8) up-chirp filter is matched to the “low” signal, the down-chirp

then we can find an analytical expression for the outp
waveformg(¢) of the matched filter. We have

whereg,.(t) is the autocorrelation function of¢). It can be
shown [8] thaty,(¢) is given by

<Pss(t) =
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xo® scenarios in a laboratory/office environment in the fourth floor
of a six-story building. From the measured impulse response
profiles, mean delay spread, coherence bandwidth, and path-

2 loss exponents have been derived. Comparison with simulation
results extracted from the SIRCIM simulator [12]—a tool for
modeling indoor radio channels—has also been made.

|
@
3

A. Parameters of the Indoor Radio Channel

Magnitude SH [dB]
Group Delay [s]

|
4
S

The baseband complex-channel impulse response of the
indoor radio channel is modeled as [13]
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Fig. 3. Measured transfer function and group delay of an optlmlzeldere k is the path indexq, the path gainP,. the phase shift,
square-root weighted down-chirp filter. and 7, the time delay of theéith path. The absolute delay of

the channel is not important, s is set to zero. The root-

filter to the “high” signal. In both paths, noncoherent envelopgean-square (rms) delay spread, which is a measure for the
detection with hard decision and an adaptive threshold contfne-dispersion of a transmitted signal, is defined as
follows. The schematic of the system is presented in Fig. 10
in Section VI, together with a more detailed description of the e
realized system. / (t = 7 )2 [R()|2 dt

The effect of overlapping and the fact that up- and down- Trms = Oo/oo (10)

chirps are not exactly orthogonal leads to disturbing cross |h(t)|? dt
correlations in both filter outputs. This limits the achievable e

data rate because the cross-correlation peaks grow togeth
with the overlapping of consecutive chirp signals in time. The
ultimative limit for the data rate is given by the time spreading

ﬁereTm is the mean excess delay given by

of the correlation peaks caused by the multipath channel. / th(t)|? dt
T = e (11)
lll. SAW CHIRPED DELAY LINES / |h(£)|? dt
Up- and down-chirp filters have been designed and fab- e

ricated from LiTaQ-X112rotY substrate using a standaque use a simple path-loss model of the forfh where d

optical lithography technique. As metallization a layer of 72¢ &s the distance between the transmitter and the receiver, and
nm aluminum has been deployed. The filters have a center.

frequency and bandwidth of 348.8 and 80 MHz, respecnve” indicates the path-loss exponent. The mean path loss in
According to [9], two apodized transducers were used anaH geibels is described as [14]

split-finger arrangement was chosen to avoid internal reflec- d

tions. The chip size is 11.8 2.0 mn?f. An optimized square- PL(d) = PL(do) + 10nlogy, <d_> (12)

root weighting of the magnitude of the filter transfer function 0

was employed to reduce the sidelobes of the compressed pulse
to —42 dB compared to the correlation peak. Measuremejpere free-space path loss is assumed between the transmitter

results of the transfer function and group delay of a dowfimd a reference distand, so thatPL(do) is given by
chirp filter are shown in Fig. 3. The chirp rate of the filters is

about+40 MHz/i:s, which results in a dispersion time of about PL(dy) = 20logy, <47rd> —Gr—Ggr (13)
2 us. This corresponds to a time-bandwidth product of 22 dB. A

IV. RADIO-CHANNEL MEASUREMENTS AND SIMULATIONs ~ Where A is the wavelength, andrr and Gk are the antenna

. . ains in decibels.
To improve the performance of a communication system gn

a timely, cost-effective, and effort-free manner, it is necessar
to use computer-aided analysis. The computational model
the indoor radio channel is crucial to the reliability of the The measurement technique applied here is a wide-band
simulation results for our proposed system. To collect dataherent frequency-response measurement, where magnitude
concerning the properties of the indoor radio channel, widand phase shift at 1601 equidistant frequency points in the
band measurements [10], [11] at 2.45 GHz have been ca®lected frequency band (2.4-2.5 GHz) are recorded. The
ducted for line-of-sight (LOS) and non-line-of-sight (NLOSMmeasurement setup is shown in Fig. 4. The system consists of

r Measurement Setup
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Fig. 4. Setup for radio-channel measurement.
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Fig. 6. Frequency response of the radio channel for transmitter posifion
in the laboratory room.

AN TABLE |
. COMPARISON OF MEASURED AND SIMULATED PATH-LOSS EXPONENTS

Topography n measured n simulated
LOS 2.1 2.3
NLOS 2.7 2.9

10m

three positions marked witH1, 52, andS3, as well as at dif-
ferent positions in all rooms to achieve enough data for a delay
spread and a path-loss estimation. During the measurements,
we kept the channel as time invariant as possible.

D. Measurement and Simulation Results

_— c?g Measured impulse response results have been compared
e with results produced with the SIRCIM simulatoSIRCIM
is a microwave multipath indoor radio-channel simulator de-
bl , signed from propagation measurements made in over ten
different buildings. The simulator allows the choice of the
carrier frequency, building type, topography, velocity of the
mobile receiver, and transmitter—receiver separation. After
the parameters are chosen, the simulator produces multipath-
power delay profiles ak/4 separations along 4.5tracks.
Fig. 5. Environment for radio-channel measurement. Fig. 6 shows the frequency response of the channel for
the transmitter positiors'1 in the laboratory room. The path
an HP 8753 network analyzer, two broad-band ground plalass has been computed as the average power loss over the
antennas with a gain of 2 dBi, and a low-noise amplifier. measured frequency band. The path-loss exponent has been
Before the measurements are carried out, the system Hatermined separately for LOS and NLOS topographies. In
to be calibrated at the frequency band of interest in order both cases, the path log3L(d) in decibels has been drawn
compensate for the influence of phase and amplitude variatiéss a function of the logarithm ofl/dy. From the results,
imposed by the cables, amplifiers, and other measuremtr path-loss exponeni has been determined by fitting a

Tm

plasterboard

// 10m . 4m

reinforced concerete

equipment. regression line through the measured points. Table | compares
experimental and computed results.
C. Measurement Environment Fig. 7 compares measured and simulated impulse response

] profiles for a transmitter—receiver distance of 5 m and LOS
The measurements have been performed in a labofgnography 61). Table Il shows measured and simulated esti-
tory/office environment in the fourth floor of a six-storymgates for the rms delay spread. Measurements and simulations

building. We used three types of locationS1( laboratory ingicate that the mean delay spread is significantly larger in
room, S2: office room, S3: hallway) for our measurements, ) )
D. M. Krizman, B. J. Ellison, and T. S. Rappapo8|RCIM Plus:

as iS.ShOWH in Fig' 5. The tests have been done at 19 disc@r'ﬁ’ulation of Indoor Radio Channel Impulse Response Models with Impulse
locations separated by/4 along a 4.5\-track at each of the Noise Rev 1.0, Dec. 1996.
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Fig. 7. Comparison between measured (solid line) and simulated (dasi®g. 8. BER versusk, /Ny for orthogonal signals. Theoretical limit after
line) indoor channel impulse responses for a transmitter receiver separafios] (solid line), nonoverlapping 2s-long chirp signals ¢-), and overlapping
of 5 m and LOS topography. 2-us-long chirp signals with a data rate of 2 Mb/s-{-

TABLE 1l 1
COMPARISON OF MEASURED AND SIMULATED

ESTIMATES FOR THErms DELAY SPREAD

Location seT;rlztion Trms [NS] | T [nS] 04 L , ]
p[m] measured | simulated ’ h LW f
51 (LOS) 5 1238 14.1 . MM WWMMM V/\j
52 (NLOS) 12 37.9 36.6 % F w5 0 o5 10
53 (NLOS) 22 48.2 34.7 time [ps]

amplitude  [rel)

0.8

0.6

L E R

— )

&;ﬁ

7 7.5 8 85 9 9.5
time  [ps|

Simulations have been carried out to evaluate the pefg. 9. simulated output of the receiver chirp filters after envelope detection.
formance of the proposed chirp spread-spectrum system.

MATLAB software has been used for the simulation and . L Lo i
all computations have been carried out in baseband. Both fnPressed in an up-chirp filter (which is the matched filter for
chirp filters and radio-channel model have been implement@d0Wn-chirp signal), a small cross-correlation peak appears at
as discrete frequency transfer functions. The effect of tiae filter output. This can be seen in Fig. 9 where the output of
multipath fading radio channel has been modeled with iftige receiver chirp filters after envelope detection is depicted.
simulation software SIRCIM, as is described in Section [VIhe occurring intersymbol interference (ISI) between up- and
In the receiver, an envelope detector followed by a decisi@Wn-chirp grows as the overlapping of consecutive chirps
device with a fixed threshold has been implemented and id&greases, which is demonstrated in Fig. 8 for a data rate of
symbol timing and clock recovery have been assumed. 4 Mb/s with 2qs-long chirp signals ¢- curve). Here, the
For the ideal case of an additive white Gaussian noi§€Viation from the theoretical limit starts already at values of
(AWGN) channel, the effect of the time overlapping of consedzs/No as low as 4 dB.
utive chirp signals is plotted in Fig. 8 in terms of bit error rate The ISI between up- and down-chirp mainly limits the
(BER) versus the signal-to-noise-rati, /Ny, which is the actual data rate. The time dispersion due to the multipath
ratio of the average bit energy to the noise power density. Tfasling channel also causes distortions in the receiver signal. As
solid line represents the theoretical result for fully orthogonghown in Fig. 9, these multipath distortions are represented by
signals [15]. The result for nonoverlapping;2-long chirp multiple pulses in the compressed signal. Delay spreads in an
signals (at a data rate of 500 kb/s; eurve) almost approachesindoor environment at UHF frequencies are typical below 50
the theoretical limit. The chirp system is slightly worse onlys. Therefore, these distortions do not contribute significantly
for high values ofF, /Ny due to the fact that up- and downto the BER compared to the cross-correlation between up- and
chirps are not exactly orthogonal. Thus, if an up-chirp signal dwn-chirp. As can be seen in Fig. 9, the distortions due to

NLOS topographies. Summarizing, we can say that experi-g **|
mental and computed data coincide well so that the SIRCIM g o+
simulator can be used as a basis for realistic simulations of&

indoor wireless systems. g

=

4

i

6

10

V. SIMULATION RESULTS
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Fig. 10. Schematic of the hardware demonstrator. VII. CONCLUSION
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We have presented performance results of a low-cost wire-
ISI are increasing if several consecutive chirps of one kiféiss communication system based on SAW chirped delay lines
are transmitted. This case must be prevented by using profdtricated on LiTa@-X112rotY. The system uses BOK as
source coding. a modulation scheme to provide both a robust and low-cost
solution. Simulations show that our system almost attains the
theoretical BER limit for the AWGN case. For use in indoor
VI. EXPERIMENTAL RESULTS and industrial environments with their strong multipath fading
istortions as well as severe electromagnetic emissions from
feasibility of the proposed system as well as to demonstrgle <" devices, our results, which were derived from simula-
its robustness for wireless indoor data communications. THgns and measurements made with a hardware demonstrator,

schematic of the demonstrator is depicted in Fig. 10. Aft"?dlcate that the system performs well up to bit rates of

combining the two quasi-orthogonal chirp signals, the IF sign IMb/S which easily covers many commercial applications

is up-converted to the 2.45-GHz band. The transmitted powseurCh as eg. wireless Intemet access. The achievable data

was+13 dBm. We used time-duplex operation for the syste ate is limited by the chirp-signal duration and chirp-signal
) % erlapping, respectively. For higher data rates, more refined

A transmit/receive switch isolates the transmitter from thr nsmission techniaues and more complex receiver structures
receiver path. A low-noise amplifier combined with a bandpa%él 4 P

filter in the receiver path is followed by a mixer and an ave to be implemented.

automatic gain control amplifier. The down-converted signal is

fed into the matched dispersive SAW delay lines, by which the ACKNOWLEDGMENT

signal is compressed in time, thus enhancing the amplitude fofrhe authors would like to acknowledge the many fruitful
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